Upwind residual discretization of enhanced Boussinesq equations for wave propagation over complex bathymetries

نویسندگان

  • Mario Ricchiuto
  • A. G. Filippini
چکیده

In this paper we consider the solution of the enhanced Boussinesq equations of Madsen and Sørensen (Coast.Eng. 18, 1992) by means of residual based discretizations. In particular, we investigate the applicability of upwind and stabilized variants of the Residual Distribution and Galerkin finite element schemes for the simulation of wave propagation and transformation over complex bathymetries. These techniques have been successfully applied to the solution of the nonlinear Shallow Water equations (Ricchiuto and Bollerman J.Comput.Phys 228, 2009 Hauke CMAME 163, 1998). The work discussed in this paper constitutes a first step toward the obtention of a model coupling the enhanced Boussinesq equations with the Shallow Water equations in wave breaking regions. The contribution of the present work is to show that equal order and even low order (second) upwind/stabilized techniques can be used to model non-hydrostatic wave propagation over complex bathymetries. This result is supported by theoretical (truncation and dispersion) error analyses, and by a thorough numerical validation. Key-words: Boussinesq equations, residual schemes, finite elements, upwinding, unstructured grids, wave propagation ∗ Inria Bordeaux Sud-Ouest, Team BACCHUS ha l-0 08 26 91 2, v er si on 1 7 Ju n 20 13 Upwind Residual discretization of enhanced Boussinesq equations for wave propagation over complex bathymetries Résumé : Dans ce travail on considère la resolution des equations de Boussinesq proposées par Madsen et Sørensen (Coast.Eng. 18, 1992) avec de mthodes "residual based". On étudie en particulier la possibilité d’utiliser des formulation décentrées de méthodes de type "continuous Galerkin" et "Residual Distribution" pour la simulation de la propagation et transformation de vagues sur bathymetries complexes. Ces méthodologies on étés utilisées avec succès pour la résolution des équations Shallow Water (Ricchiuto and Bollerman J.Comput.Phys 228, 2009 Hauke CMAME 163, 1998). Ce travail constitue un premier pas dans l’obtention d’un modèle complet qui couple les équations de Boussinesq pour la propagation des vagues avec les équations Shallow Water dans la région de déferlement. La contribution de cet article est de montrer que meme avec des interpolation surface libre/vitesse d’ordre deux des techniques type éléments finis upwind peuvent etre utilisées pour des modèles non-hydrostatiques de type Boussinesq. Ce résultat est confirmé par des analyses d’erreur et par des nombreux études numériques. Mots-clés : Modèles de Boussinesq, schémas residual based, éléments finis, upwinding, maillages non-structurés, propagation de vagues ha l-0 08 26 91 2, v er si on 1 7 Ju n 20 13 Residual based approximation of Boussinesq equations 3

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling Breaking Waves and Wave-induced Currents with Fully Nonlinear Boussinesq Equations

A Boussinesq-type wave model is developed to numerically investigate the breaking waves and wave-induced currents. All the nonlinear terms are retained in the governing equations to keep fully nonlinearity characteristics and it hence more suitable to describe breaking waves with strong nonlinearity in the nearshore region. The Boussinesq equations are firstly extended to incorporate wave break...

متن کامل

Incompressible laminar flow computations by an upwind least-squares meshless method

In this paper, the laminar incompressible flow equations are solved by an upwind least-squares meshless method. Due to the difficulties in generating quality meshes, particularly in complex geometries, a meshless method is increasingly used as a new numerical tool. The meshless methods only use clouds of nodes to influence the domain of every node. Thus, they do not require the nodes to be conn...

متن کامل

Central-Upwind Schemes for the Boussinesq Paradigm Equations

We develop a new accurate and robust numerical method for the Boussinesq paradigm equation (BPE). To design the method we first introduce a change of variables, for which the BPE takes the form of a nonlinear wave equation with the global pressure, and rewrite the wave equation as a system of conservation laws with a global flux. We then apply a Godunov-type central-upwind scheme together with ...

متن کامل

MPI- and CUDA- implementations of modal finite difference method for P-SV wave propagation modeling

Among different discretization approaches, Finite Difference Method (FDM) is widely used for acoustic and elastic full-wave form modeling. An inevitable deficit of the technique, however, is its sever requirement to computational resources. A promising solution is parallelization, where the problem is broken into several segments, and the calculations are distributed over different processors. ...

متن کامل

Boussinesq systems in two space dimensions over a variable bottom for the generation and propagation of tsunami waves

Considered here are Boussinesq systems of equations of surface water wave theory over a variable bottom. A simplified such Boussinesq system is derived and solved numerically by the standard Galerkin-finite element method. We study by numerical means the generation of tsunami waves due to bottom deformation and we compare the results with analytical solutions of the linearized Euler equations. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 271  شماره 

صفحات  -

تاریخ انتشار 2014